A Possible Future for the Thermophysics of Fluids

William A. Wakeham
Imperial College of Science,
Technology and Medicine, London,
UK

- To stimulate discussion of the future role of research in the thermophysics of fluids by examining
 - Beginning
 - Development
 - Present state
 - An analysis of present state
 - Various possible futures
- A personal view biased on experience of
 - Transport properties
 - Physics
 - Chemical Engineering
 - Wide perspective of research

*

Ancient History

(largely experimental)

- 18th Century
 - ◆ Capillarity
- 19th Century
 - ◆ Liquefaction of gases
 - ◆ Rumford (1797) -Andrews (1869)
 - ◆ Critical point
 - ♦ Boyle' Law
 - ◆ Charles Law
 - ◆ Deviations (Regnault)
 - Viscosity (Maxwell)

Fig. 1.5. p–V projection of the p–V-T diagram for a pure fluid. Solid lines are phase boundaries, dashed lines are isotherms, horizontal dashed lines are tie-lines connecting coexisting phases, p_i and T_i are triple-point pressure and temperature, and C is the gas–liquid critical point.

Ancient History (largely theoretical)

- Clausius and Maxwell
 - ◆ Maxwellian distribution
 - transport of mass, energy momentum
 - ◆ Mean-free path
 - ◆ Virial theory
 - ♦ Van der Waals
 - **♦** Boltzmann
 - ◆ Corresponding states

1914-1949 (largely theoretica

- The era of the gas
 - 'A fallow period for liquids' *Rowlinson*
 - ◆ Virial equation
 - ◆ Chapman-Enskog theory
 - ◆ Intermolecular potential models
 - ◆ Sutherland
 - ◆ Keesom
 - ◆ Lennard Jones
 - Second virial coefficient 1924
 - Viscosity 1942-1949
- Liquids neglected
 - simple theories

1914-1949 (largely experimental)

- Thermodynamic Properties
 - Traditional methodology
 - Careful manufacture
 - Great skill
 - Considerable time/continuity
 - Improving precision and accuracy
- Transport Properties
 - Traditional methodology
 - Simple instruments
 - Great skill
 - Ignorance of fluid mechanics
 - Static precision and accuracy

Transport Property Instruments

Figure 5.26. Thermal conductivity column instrument.

1945-1966 largely theoretical

- Liquids
 - Integral equations for Equilibrium
 - ◆ Kirkwood, Yvon Bogoliubov Born Green
 - Computer Simulation
 - ◆ Monte Carlo
 - Hard spheres (1950)
 - Lennard-Jones (1957)
 - Molecular Dynamics
 - Hard spheres (1956);
 - Lennard-Jones (1964)

Polyatomic gas transport properties

Gases

- Kinetic theory for polyatomic systems
 - ◆ Wang-Chang, Uhlenbeck, de Boer
- Exact Calculation impossible even if
 - ◆ semiclassical
 - ◆ classical
- Mason-Monchick approximate theories
 - Collision dynamics simplified
 - pseudo-spherical assumptions

* 1945-1966 (largely experiment

Engineers become involved

- Steam a driving force
- engineering design of equipment
- decline of chemists
- decline of glass apparatus

Fluid mechanics

- Navier-stokes equations
- Analytic solutions of non-linear differential equations
- Convection

Accurate Viscosity Measurements

Figure 4.31. A schematic diagram of the capillary viscometer employed by Swindells and his collaborators for the determination of the viscosity of water at 20°C. (Taken from Swindells, Coe, and Godfrey, J. Res. Natl. Bur. Stand., 48, 1, 1952.)

1945-1966 (Largely Experimental)

- Careful, constrained design
 - construction
 - measured variables selected to allow high precision
 - metal has a role!

New viscometers

1966-1975

(Experiment and theory)

- Intermolecular forces era
 - Molecular beam scattering
 - Infra-red spectroscopy on dimers
 - second virial coefficient
 - Noble gases
 - Exciting era
- Viscosity data inconsistent
 - New programme of measurement
 - ◆ Kestin, Smith

Molecular beam scattering

Fig. 4.14. Molecular beam apparatus for measuring differential cross-sections. (Y. T. Lee, J. D. McDonald, P. R. LeBreton, and D. R. Herschbach.²⁴)

Molecular beam scattering

Fig. 4.15. Differential cross-sections $\sigma(\Theta, E)$ for the inert gases, He, Ne, Ar, Kr, and Xe, showing fine structure. Principal features: (A) rainbow maximum; (B) supernumary rainbow peaks; (C) symmetry (identical particle) oscillations; (D) high-frequency quantum oscillations; (E) monotonic large angle scattering. (J. M. Farrar, T. P. Schafer, and Y. T. Lee. 25)

*

Argon Intermolecular potential

Fig. 2.1. A modern version of the intermolecular pair potential for argon. Solid line: a representation of the full potential; symbols: △ inversion of gas viscosity; ● inversion of second virial coefficient.

Intermolecular potentials

Problem solved

- New viscosity data accurate
- All possible pairs, combinations of gases studied over a wide range of T
- ONLY low pressure (density) data used
- Inversion methods
- Intermolecular potentials known for noble gases

Divergence (1975)

- Physics (Transport)
 - Dilute Polyatomic gases difficult
 - internal degrees of freedom
 - non-spherically symmetric potentials
 - But
 - Thermal conductivity is a new property
 - So approximate physics employed that was untested until 1990
 - ◆ Mason-Monchick approximation etc
 - Considerable misunderstanding

Divergence

- Critical behaviour of fluids
 - Entirely different type of physics
 - Intermolecular interactions not important
 - Entirely new types of experiment
- High density Fluids
 - ◆ Simulation
 - ◆ Long-time tails and logarithmic term
- Measurements (Achieving high accuracy)
 - Thermal conductivity
 - Viscosity
 - ◆ Diffusion

Thermal conductivity

Figure 7.3 The transient hot-wire cell employed for gases by Haran and Wakeham [44].

Divergence

Physics (Thermodynamics)

- Pure Fluids
 - ◆ Computer simulation (Simple systems, simplified models of potential)
 - A variety of models of thermodynamics
 - Corresponding states even for non-spherical systems
 - Perturbation theory
 - Hard-sphere models
 - Critical behaviour of fluids

Process Engineering

*Engineering (Process)

- ◆ Design of processes becomes more computerbased
 - search for optimum design
 - energy efficiency
 - maximum profit
 - generated need for thermodynamic and transport properties in databases and representational equations
 - multicomponent systems over a wide range of conditions
 - phase behaviour most important
 - robust computation procedure vital

Methanol Synthesis Reactor

An illustration of effect of errors in simulations on design of a distillation column

Engineering need dominates (1975-1999)

♦ Conflicts

- Physics very difficult and not well-enough developed
- Simulation promises, but cannot deliver for real systems
- Experimentalists seek funding using an engineering justification but only short-term funding
- Rapid results not available from precise experimental equipment that was used before
- Rapid results require easily accessible conditions

A period of frustration

♦ Conflicts

- rapid results mean pure fluids
- Each thesis or proposal promises binary systems and possibly ternary, never delivers
- rapid results obtained from different equipment than the accurate techniques and often wrong (R134a!)
- Arguments for accurate measurements drowned by the need for speed and fitness for purpose

Thermal conductivity of Gallium

An age of frustration

- Industry cannot wait
 - ◆ IUPAC empirical equations of state, minimum theory, critical assessment of data for pure fluids
 - ◆ Corresponding states
 - One-fluid
 - Two-fluid
 - Kestin, Ro & Wakeham
 - ◆ Cubic equations of state
 - ◆ UNIFAC, UNIQUAC
 - ◆ Mixture rules, based on poor physics but what else can be done?

Process design

- ◆ Empirical correlations for properties dominate the software
- ◆ Exact theory fails : use what there is and avoid limitations
- ◆ Experiment fails to provide enough data
- ◆ Real systems too complicated (or dirty) to measure
- ◆ Delivery from accurate measurement supported by theory/semi-empiricism does not deliver
- ◆ Mixtures and liquids neglected
- ◆ Simulation begins to be a force

Experimentalists

- ◆ Concentration upon old techniques, simple fluids and a few mixtures
 - Volumes, enthalpies of mixing
 - Viscosity of simple liquids
 - Transport properties of environmentally-friendly refrigerants
- ◆ Blame funding agencies for failure to support
- Number of experimental installations decays
- Even less ability to deliver

Reducing experimental activity

Except for a few!

- Imaginative approach to difficult conditions experimentally
 - ◆ Molten silicon
 - ♦ Molten metals
- Use of new technology to provide accurate and rapid measurement
 - spherical acoustic resonators
 - vibrating-wire viscometer
 - ◆ Forced-Rayleigh scattering

Except for a few!

- Critical phenomena great progress
- A few vital fluid systems studied in focused programmes
- Microgravity

- ◆ Routine/mundane papers
 - JCT One issue: One new system
 - IJT One issue: No new systems studied
- ◆ Repetition of familiar systems
- ◆ Declining number of active laboratories
 - growth in southern Europe
- ◆ Theory and experiment not in contact
- ◆ Engineering and experiment not in contact

- ◆ Computer simulation nearer to engineering
 - no limitations on conditions
 - no stated limitations on fluids
 - any mixture can be contemplated
 - molecular design offered
 - What-if's of synthetic routes possible
- ◆ Validation against experiment adequate for purpose
- ◆ Theory begins to lose its place
- ◆ Is this healthy?

Analysis

- ◆ A plateau in the development of the subject of greater length than usual
 - Some of the tasks from earlier divergences have been solved
 - The theoretical tasks that remain have proved exceedingly difficult
 - ◆ liquids
 - dense gases
 - non-spherically symmetric molecular systems
 - intermolecular potentials

Analysis

- Experiment for engineering purposes is very difficult
 - ◆ High/Low temperature
 - Ill-characterised systems
 - Mixtures
 - ◆ Speed
 - ◆ Adequate accuracy
 - ◆ Integrated with the engineering problem
- Separation from theory makes the subject more like reproduction than sex!
- Increasing direct role of simulation reduces role of /need for theory

**Possible ways forward

- Diversify (As a deliberate act)
 - ◆ Engineering applications
 - Find real problems where the properties of the fluids matter a great deal. Carry out thermophysical component *and* the engineering component
 - ♦ Molten silicon
 - Composition distribution in oil reservoirs
 - Reaction injection moulding
 - Chemically-reacting systems

- Instrument development
- Use experience of years of development to meet need for adequate accuracy for all systems by design of in-situ measurement capability (sensors)
- New technology offers opportunity
 - ♦ micro/nano instruments
- health applications
- process control
- Industrial instruments that produce accurate results without especial care and skill

Possible ways forward

- ◆ Rediscover Physics in the field
 - Return to problems neglected that may have an exciting outcome and may now be tractable
 - liquid state of atomic systems
 - monatomic species
 - ◆ metals
 - Plasmas
 - Link Experiments with tests of theory not empirical recipes
 - Link Simulation and theory more vigorously
 - Phase behaviour?
 - Moderately dense gases (transport)

Possible ways forward

- New materials
 - molten polymers
 - liquid crystals
- Heterogeneous systems
 - **◆** Insulations
 - Liquid foams
 - ◆ Cells
 - ◆ Tissues
- Reacting systems
 - separation and reaction simultaneously

Possible ways forward

- ◆ Reclaim Engineering software
 - This field has been surrendered to process/computing engineers with no training in the field of thermophysics
 - Dangerous!
 - Combine the physics with appropriate software
 - Development of robust algorithms
 - ◆ Phase equlibrium
 - and in reacting systems

P-x phase envelopes of the n-eicosylbenzene + n-tetracontane mixture at T = 658 K

Conclusions

- ◆ The field is in danger of becoming a dinosaur
 - It must evolve
 - use the pattern that has worked in the past when evolution was needed
- ◆ Find real challenges
 - linkages with Physics
 - linkages with Chemistry
 - linkages with Engineering
- ◆ Attack new materials and seek to *explain* their properties not merely record them